If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2-5x-19=0
a = 11; b = -5; c = -19;
Δ = b2-4ac
Δ = -52-4·11·(-19)
Δ = 861
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{861}}{2*11}=\frac{5-\sqrt{861}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{861}}{2*11}=\frac{5+\sqrt{861}}{22} $
| 5x+5(x+2)=250 | | 3/4x=2x-5= | | 5^x+5^(2x+1)=250 | | 5^x+5^(x+2)=250 | | y=-0.2+0.5 | | 4n+2=18- | | X4-5x2-14=0 | | 8x-12.87=7x+12.13 | | 5x2-x-5=0 | | 5x-1+4x-4+x+6=11 | | 3x-2+2x-3+5=20 | | -7g-2=-30 | | 15t-2−t−6=0 | | 15t2−t−6=0 | | 50 | | 50 | | x+x+10=54 | | y-3/8+5=14 | | 1/2t-3=2t+3 | | 6x-4+6x-4+8x+2=34 | | 2x-1+2x-4+x+3=11 | | 20*2+35*2=x*2 | | 20^2+35^2=x^2 | | 4x+2+4x+3=61 | | 10x+6+10x+6=252 | | 25+10(12−x)=5(2x−7) | | 4w+96=180 | | 37s+84=180 | | 12p+84=180 | | 4z+56=180 | | 13c+37=180 | | 29u+64=180 |